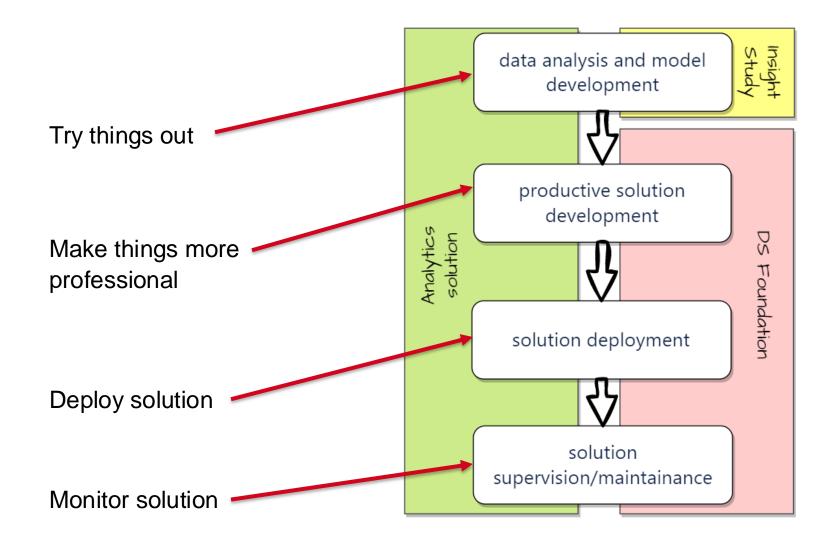
FROM CONCEPT TO DEPLOYMENT: THE JOURNEY OF ML OPS IN MODERN MACHINE LEARNING

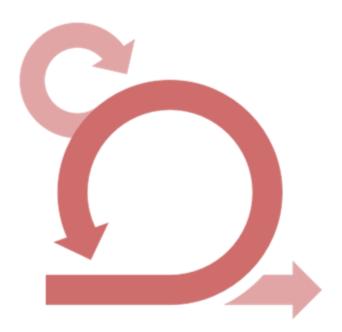
Digital Liechtenstein Webinar Jonas Bokstaller 11th of March 2025

DIFFERENT STAGES OF DATA SCIENCE PROJECTS

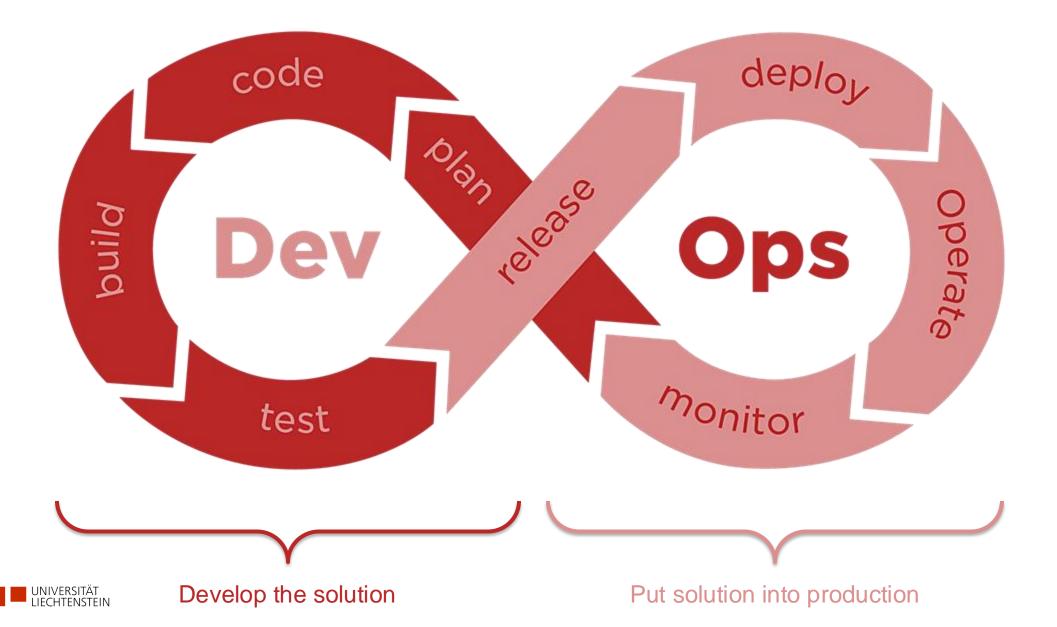


AGILE METHODOLOGIES FOR EFFICIENT WORKFLOW

- Agile methodologies proven to be effective in software development
- Can also be applied to Data Science projects
- Most popular framework within Agile approach is Scrum
- Scrum provides structured and iterative approach to project management



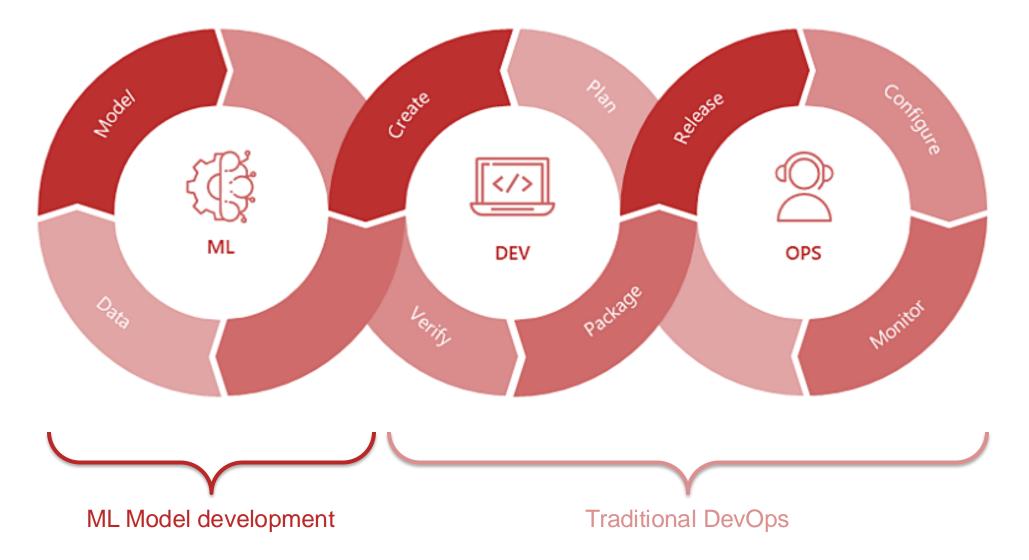
DEVOPS LIFECYCLE SIMILAR TO MLOPS LIFECYCLE



MULTIPLE TOOLS SUPPORTING DEVOPS



MLOPS ADDS ONE ADDITIONAL COMPONENT



MLOPS HELP TO PROFESSIONALIZE/AUTOMATE PIPELINES

• Problem:

- More and more companies rely on ML models
- Difficult to scale ML projects only in Python notebooks/files
- MLOps:
 - Combines ML, DevOps, and data engineering
- Goal:
 - Deploy and maintain ML models in production reliably and efficiently
 - Automate the ML lifecycle to efficiently manage multiple ML projects
- Benefits:
 - Improves model reliability and reproducibility
 - Enables continuous integration and delivery of ML models
 - Facilitates monitoring and management of models in production

MLOPS IS A MULTIDISCIPLINARY TASK

Data Scientist

(ML model development)

ML Engineer/

MLOps Engineer

(cross-functional management of ML environment and assets: ML infrastructure, ML models, ML workflow pipelines, data ingestion, monitoring)

Data Engineer

(Data management, data pipeline management)

DevOps Engineer

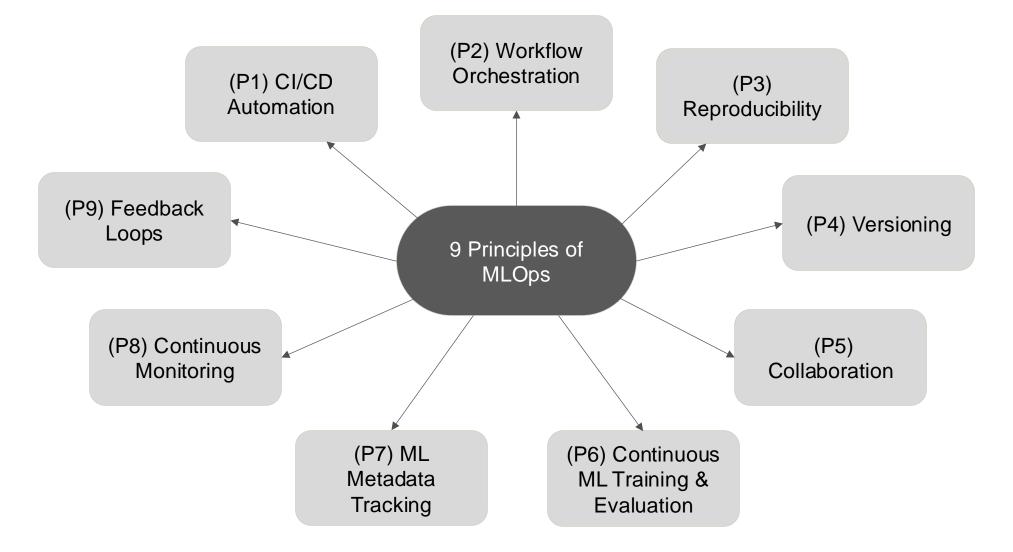
Backend Engineer

(Software engineer with DevOps skills, ML workflow pipeline orchestration, CI/CD pipeline management, monitoring)

Software Engineer

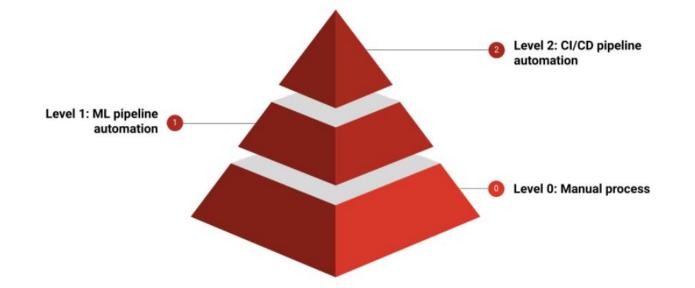
(applies design patterns and coding guidelines)

WHAT PRINCIPLES HELP US DOING MLOPS SUCCESSFULLY?

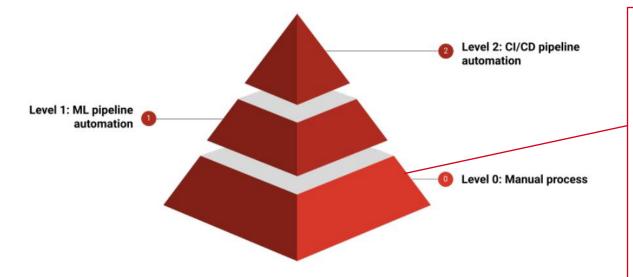


MLOPS MATURITY MODELS

Models to define the maturity of MLOps projects



LEVEL 0 – NO AUTOMATION

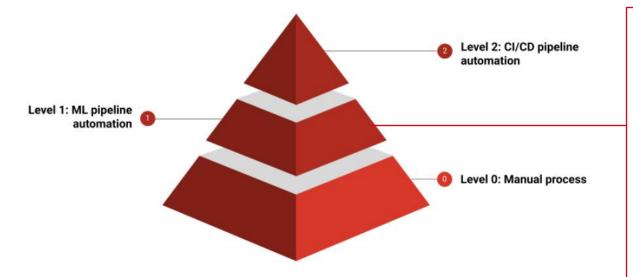


Characteristics

• Manual Python notebook runs

- Disconnection between ML and operations
- Infrequent release iterations
- No CI/CD
- No integration into front-end
- Lack of active performance monitoring

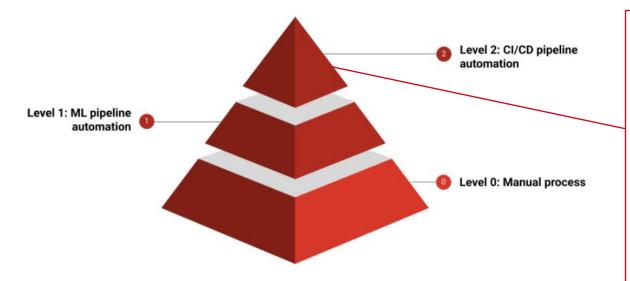
LEVEL 1 – ML PIPELINE AUTOMATION



Characteristics

- Rapid iterations
- Continuous retraining of model automated
- Python files with Classes and methods interacting with each other
- Continuous delivery of models
- Pipeline deployment

LEVEL 2 – CI/CD PIPELINE AUTOMATION



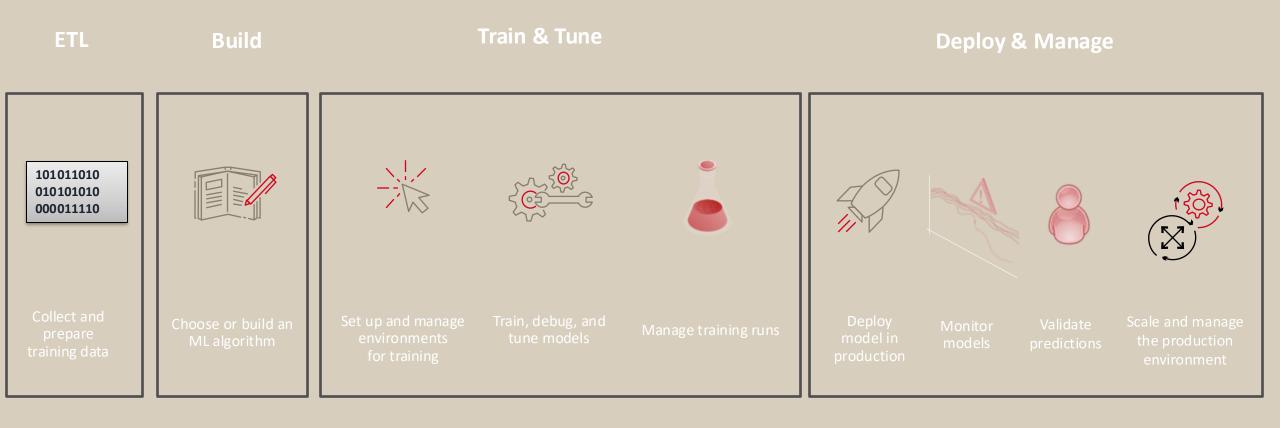
Characteristics

- Development and experimentation
- End-to-end ML pipeline integration
- Automated triggering of re-training
- Model delivered to front-end via API
- Monitoring mechanism in place
- Model registered

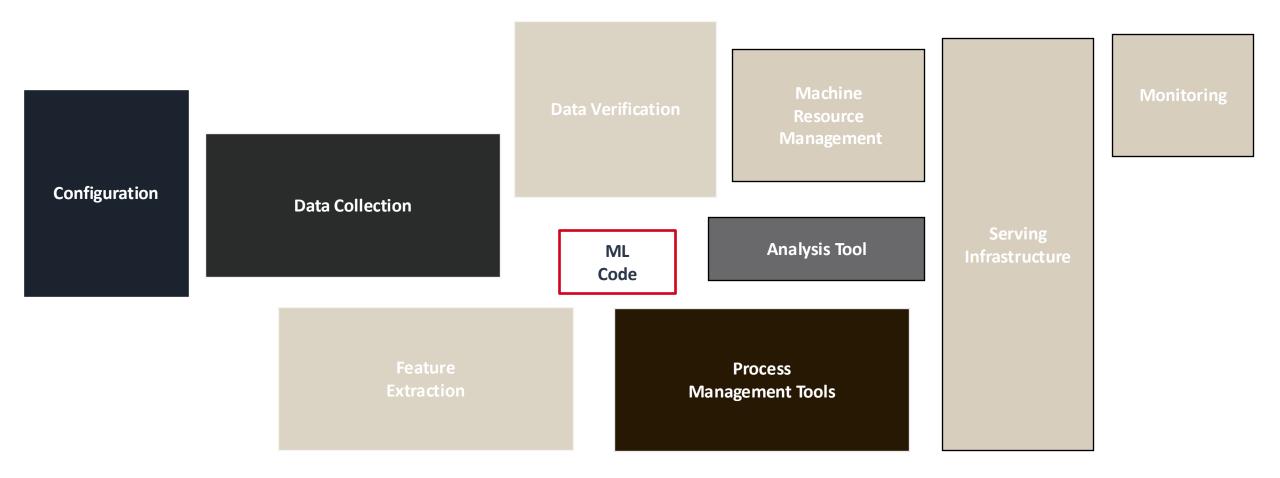
ML PIPELINE: OVERVIEW

- Helps automate preparing data and training an ML model with the data
- Consists of several stages/building blocks
- Each stage feds its output as input into the next stage
- Allows raw data to flow through the different building blocks into the input for ML model training

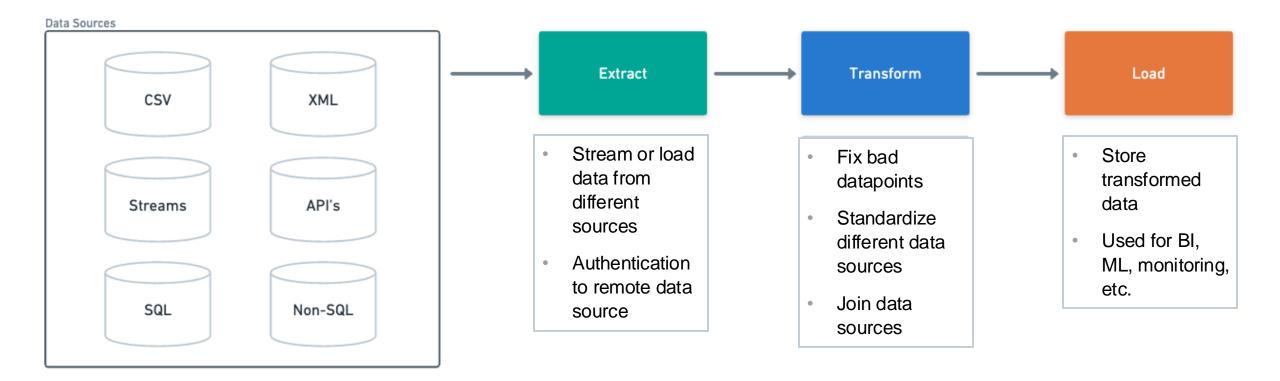
COMPLEXITY OF MLOPS PIPELINE



ML CODE IS A SMALL FRACTION OF REAL-WORLD MLOPS



ETL PIPELINE NOT ONLY USED FOR MLOPS



DATA PRE-PROCESSING USUALLY TAKES THE MOST TIME

- Data Cleaning
 - Duplicates
 - Missing Data
 - Ignore the datapoint
 - Fill the missing values (mean, median, etc.)
 - Noisy data
 - Binning method
 - Mismatched data types
 - Outlier detection
 - Measuring errors
 - Type conversion errors
 - Integer Overflow

Data Transformation

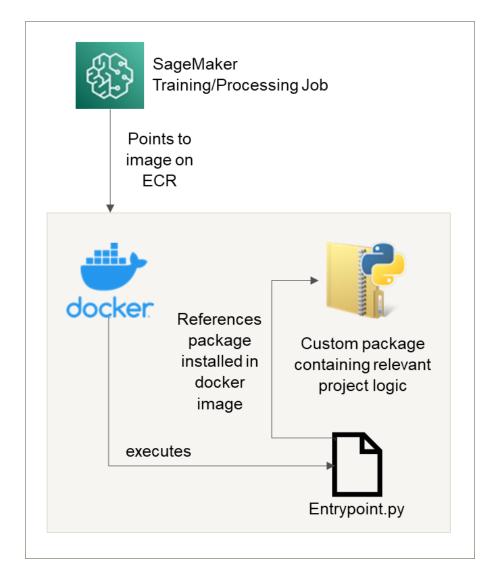
- Normalization
 - Linear/Log scaling to (-1, 1)
- Feature encoding
 - Classes → 1-hot-encoding
- Feature engineering
- Discretization
 (Int → Classes)
- Handling imbalanced data
 - Oversampling
 - Undersampling

Data Reduction

- Dimensionality reduction
 - Principle Component Analysis (PCA)
- Aggregation
- Sampling
 - Random Sampling
 - Cluster Sampling
- Feature selection
 - Correlation Analysis

TURNING ML CODE INTO MLOPS PROJECT

- Project has completed ETL & Experimentation stages
- Convert codebase into python package following object-oriented programming principles
- Modular code structure: package "jobs" in executable modules
- Create entry-points (Python scripts calling the executable modules) for Docker image

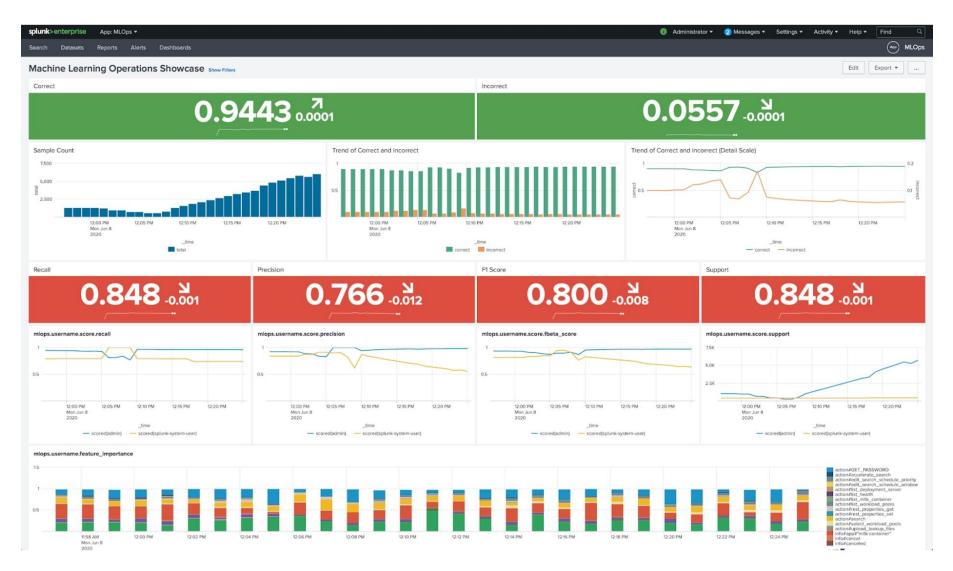


ML PIPELINE: MODEL EVALUATION

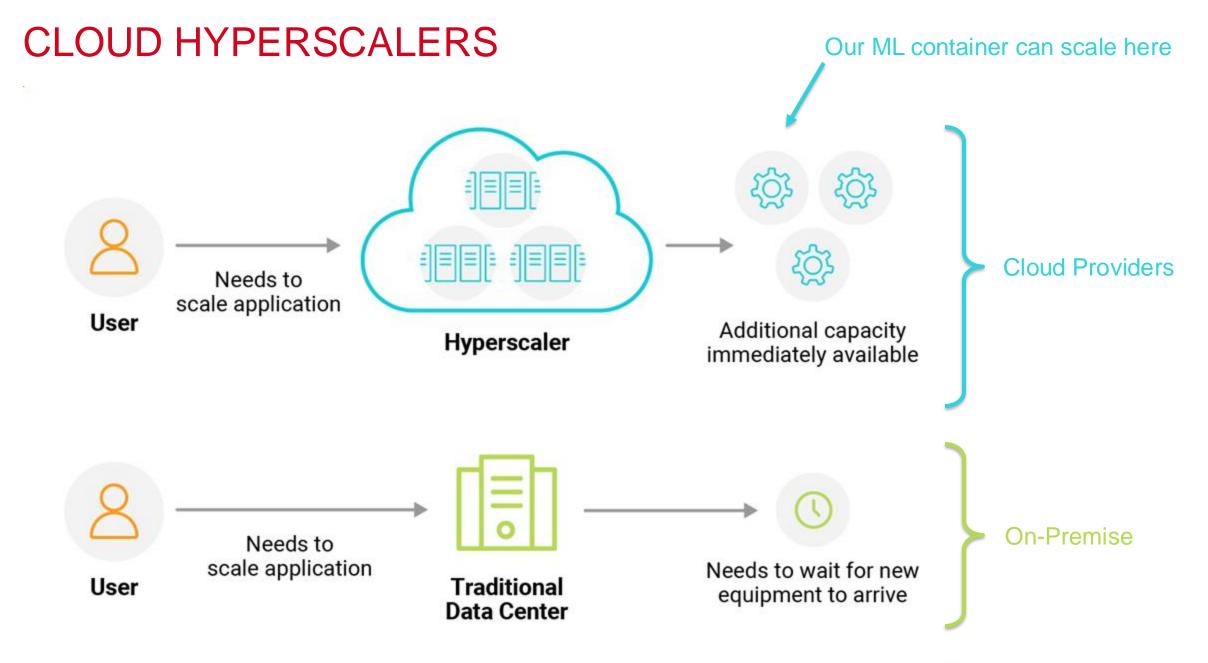
- Assess the performance of the ML model
- Essential for understanding a model's strength and weaknesses to decide whether to deploy to production
- Compare to previous models and benchmark models (e.g. more traditional algorithms)
- Discuss with business stakeholders how precise a model should be
- Monitor the performance of a model over time
 - Model performance can degrade over time due to changes in data distribution

\rightarrow We need quantitative measures to achieve this

MONITORING DASHBOARD



UNIVERSITÄT LIECHTENSTEIN



CLOUD HYPERSCALERS

Virtual Servers

Platform-as-a-Service Serverless Computing

Docker Management

-

Kubernetes Management

Object Storage

Archive Storage

File Storage

Global Content Delivery

Managed Data Warehouse

Instances Elastic Beanstalk Lambda ECS EKS **S**3 Glacier EFS CloudFront Redshift

VM Instances App Engine Cloud Functions Container Engine

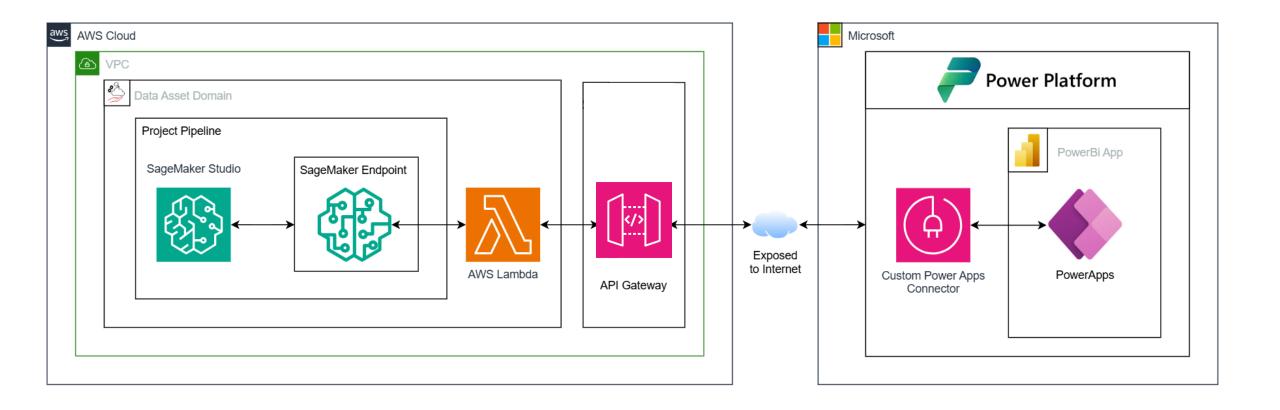
Kubernetes Engine

Cloud Storage Coldline ZFS / Avere Cloud CDN Big Query VMs Cloud Services Azure Functions Container Service

Kubernetes Service

Block Blob Archive Storage Azure Files Delivery Network SQL Warehouse

AMAZON WEB SERVICES (AWS)



DISCUSSION & QUESTIONS

Thank you for your attention!