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DIFFERENT STAGES OF DATA SCIENCE PROJECTS
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AGILE METHODOLOGIES FOR EFFICIENT WORKFLOW

- Agile methodologies proven to be effective in software development
« Can also be applied to Data Science projects
* Most popular framework within Agile approach is Scrum

« Scrum provides structured and iterative approach to project management
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DEVOPS LIFECYCLE SIMILAR TO MLOPS LIFECYCLE

I W YVERSTAT Develop the solution Put solution into production




MULTIPLE TOOLS SUPPORTING DEVOPS
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MLOPS ADDS ONE ADDITIONAL COMPONENT

ML Model development Traditional DevOps
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MLOPS HELP TO PROFESSIONALIZE/AUTOMATE PIPELINES

Problem:
More and more companies rely on ML models
Difficult to scale ML projects only in Python notebooks/files

MLOps:
Combines ML, DevOps, and data engineering
Goal:

Deploy and maintain ML models in production reliably and efficiently
Automate the ML lifecycle to efficiently manage multiple ML projects

Benefits:
Improves model reliability and reproducibility
Enables continuous integration and delivery of ML models
Facilitates monitoring and management of models in production
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MLOPS IS A MULTIDISCIPLINARY TASK
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Data Scientist

(ML model development

ML Engineer/
MLOps Engineer

(cross-functional management of
ML environment and assets: ML
infrastructure, ML models, ML
workflow pipelines, data
ingestion, monitoring)

(Data manageément, data (Software engine
pipeline management) skills, ML work{lowspipeline
orchestration, CCDpipeline
management,

Software Engineer

(applies design patterns and
coding guidelines)




WHAT PRINCIPLES HELP US DOING MLOPS SUCCESSFULLY?

(P2) Workflow

(P1) CI/CD Orchestration (P3)
Automation Reproducibility

(P9) Feedback

Loops _ (P4) Versioning
9 Principles of

MLOps

(P8) Continuous
Monitoring

(P5)
Collaboration

(P7) ML (P6) Continuous
Metadata ML Training &
Tracking Evaluation
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MLOPS MATURITY MODELS

Models to define the maturity of MLOps projects

Level 1: ML pipeline
automation 0
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o Level 2: CI/CD pipeline
automation

© Level 0: Manual process
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LEVEL 0 — NO AUTOMATION

e Level 2: CI/CD pipeline
automation

Level 1: ML pipeline
automation 0

© Level 0: Manual process
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Characteristics

Manual Python notebook runs
Disconnection between ML and operations
Infrequent release iterations

No CI/CD

No integration into front-end

Lack of active performance monitoring




LEVEL 1 — ML PIPELINE AUTOMATION

e Level 2: CI/CD pipeline
automation

Characteristics

Level 1: ML pipeline
automation 0

© Level 0: Manual process
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Rapid iterations
Continuous retraining of model automated

Python files with Classes and methods
interacting with each other

Continuous delivery of models

Pipeline deployment




LEVEL 2 — CI/CD PIPELINE AUTOMATION

Level 1: ML pipeline
automation 0
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e Level 2: CI/CD pipeline
automation

© Level 0: Manual process

Characteristics

Development and experimentation
End-to-end ML pipeline integration
Automated triggering of re-training
Model delivered to front-end via API
Monitoring mechanism in place

Model registered




ML PIPELINE: OVERVIEW

Helps automate preparing data and training an ML model with the data

Consists of several stages/building blocks
Each stage feds its output as input into the next stage

Allows raw data to flow through the different building blocks into the input for ML model training
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COMPLEXITY OF MLOPS PIPELINE
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ML CODE IS A SMALL FRACTION OF REAL-WORLD MLOPS

Configuration
& Data Collection

ML

Analysis Tool
Code

Process

Management Tools




ETL PIPELINE NOT ONLY USED FOR MLOPS

Data Sources

csv

Streams

SaL

XML

API's

Non-5SQL
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DATA PRE-PROCESSING USUALLY TAKES THE MOST TIME

Data Cleaning

Duplicates

Missing Data
Ignore the datapoint
Fill the missing values
(mean, median, etc.)

Noisy data
Binning method

Mismatched data types

Oultlier detection
Measuring errors
Type conversion errors
Integer Overflow
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Data Transformation
Normalization
Linear/Log scaling to (-1, 1)
Feature encoding

Classes - 1-hot-encoding
Feature engineering

Discretization
(Int > Classes)

Handling imbalanced data

Oversampling
Undersampling

Data Reduction
Dimensionality reduction

Principle Component
Analysis (PCA)

Aggregation
Sampling
Random Sampling
Cluster Sampling
Feature selection

Correlation Analysis
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TURNING ML CODE INTO MLOPS PROJECT

Training/Processing Job

Project has completed ETL & Experimentation
stages

Convert codebase into python
package following object-oriented programming

principles
Modular code structure: package "jobs" in executable
modules

Create entry-points (Python scripts calling the
executable modules) for Docker image
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ML PIPELINE: MODEL EVALUATION

Assess the performance of the ML model

Essential for understanding a model’s strength and weaknesses to decide whether to deploy to production
Compare to previous models and benchmark models (e.g. more traditional algorithms)
Discuss with business stakeholders how precise a model should be
Monitor the performance of a model over time
Model performance can degrade over time due to changes in data distribution

- We need quantitative measures to achieve this
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MONITORING DASHBOARD

Machine Learning Operations Showcase swow e
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CLOUD HYPERSCALERS
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Our ML container can scale here

Additional capacity
immediately available

>

Needs to wait for new
equipment to arrive

} Cloud Providers

Source: Melissa Palmer / 22



CLOUD HYPERSCALERS
dWS

s

Virtual Servers Instances .VMInstances

Platform-as-a-Service App Engine

Serverless Computing Cloud Functions

Docker Management

Container Engine

Kubernetes Management Kubernetes Engine

Object Storage ...toud Storage |

Archive Storage Coldline

File Storage ol RVETE

Global Content Delivery Cloud CDN

Managed Data Warehouse Redshift Bnguery SQL Warehouse
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AMAZON WEB SERVICES (AWYS)

R AWS Cloud

Project Pipeline

SageMaker Studio

SageMaker Endpoint
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DISCUSSION & QUESTIONS

Thank you for your attention!
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